КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ

Утверждено на заседании Научно-методического совета КазНУ им. аль-Фараби Протокол № 6 от 22 июня 2020 Проректор по учебной работе ______ А.К. Хикметов

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ «8D07112 – НАНОМАТЕРИАЛЫ И НАНОТЕХНОЛОГИИ» ДЛЯ ПОСТУПАЮЩИХ В ДОКТОРАНТУРУ PhD

Программа составлена в общеобразовательным станда; Наноматериалы и нанотехнологи	ртом по спег		• •
Программа рассмотрена на		афедры фи	изики плазмы,
нанотехнологии и компьютерної Протокол № от	-		
11p010k031 3\\(\frac{1}{2} \) 01	20201.		
Зав. кафедрой КФПН и КФ		_ Коданова	C.K.
Одобрено на заседании методбю	ро факультета		
Протокол № от	_2020 г.		
Председатель методбюро		Габдулли	на А.Т.
Утверждено на Ученом Совете ф	ракультета		
Протокол № от	2020 г.		
Председатель Ученого совета,			
декан факультета		Давлет	гов А.Е.
Ученый секретарь		Исаног	ва М.К.

СОДЕРЖАНИЕ

1. Цели и задачи вступительного экзамена по ОП «8D07112 — Наноматериалы и нанотехнологии»

Вступительный экзамен предназначен для определения практической и теоретической подготовленности магистра и проводится с целью определения соответствия знаний, умений и навыков магистрантов требованиям обучения в докторантуре по направлению подготовки.

2. Требования к уровню подготовки лиц, поступающих в докторантуру PhD

Предшествующий минимальный уровень образования лиц, желающих освоить образовательные программы докторантуры по ОП «8D07112 — Наноматериалы и нанотехнологии»

Требования к поступающим:

иметь представление:

- о новейших достижениях науки и техники в области нанотехнологий;
- о состоянии науки и управления образованием за рубежом;
- о современных педагогических технологиях;
- о современных методах, применяемых в нанотехнологиях. *знать*:
- практику и организационные подходы к научной работе в реальных исследовательских лабораториях в казахстане и за рубежом, основные тенденции и перспективы развития научно-исследовательских и опытно-конструкторных разработок в казахстане и в мире по теме исследования;
- современные экспериментальные, теоретические и численные методы исследования физических явлений и процессов;
- основы юридической базы охраны интеллектуальной собственности, защиты приоритета и новизны результатов исследований;
 - один из иностранных языков;
 - основы педагогической и убечно-методической работы в высшей школе. *vметь*:
- использовать возможности современных теоретических и экспериментальных подходов для решения передовых задач нанотехнологий и смежныхоблестей;
- профессионально интерпретировать данные научно-исследовательской работы на уровне эксперта в сфере профессиональной деятельности;
- использовать компьютерную технику для решения профессиональных задач, творчески реализовать сложные алгоритмы решения комплексных профессиональных задач по теме научных исследований;
- формулировать и решать задачи, возникшие в ходе научной деятельности и требующие углубленных профессиональных знаний;
- применять на практике аппаратно-методическое обеспечение чистоты и микроклимата в индустрии наносистем;
 - заниматься руководством студенческих курсовых и дипломных работ.

иметь навыки:

- владение методами получения, диагностики и анализа наносистем и наноматериалов на уровне эксперта;
- работы с технической документацией и литературой, научно-техническими отчетами, справочниками и другими информационными источниками;
- проведение технических расчетов и определения экономической эффективности научных исследований и разработок;
- роботы с методическими, нормативными и руководящими материалами, касающимися выполняемой работы, правил и условий выполнения работ;

- использование методов оптимальной организации труда научно-исследовательский коллективов при исследовании, обработке и изготовлении стандартных образцов и устройств, отвечающих требованиям стандартов и рынка;
- организация научных исследований, планирования и проведения исследований, а также правильного оформления результатов;
- умение проводить все виды занятий в высшей школе (лекции, практические и лабораторные занятия);
- иметь навыки проведения контроля химического состава и геометрии нанообъектов.

быть компетентным:

- в современных достижениях науки и техники, передовом отечественном и зарубежном опте в соответствующей области знаний;
 - в вопросах о состоянии науки и управления образованием зарубежом;
- в вопросах технической и экологической безопасности, защиты жизнедеятельности человека, правовых норм и экономических проблем;
 - в организации производства производства, труда и управления;
 - в применении основ трудового законодательства;
- в правилах экологической безопасности и норм охраны труда, техники безопасности, производственной санитарии и противопожарной защиты;
- в вопросах внедрений системы менеджмента качества в научно-исследовательских, образовательных, проектно-конструкторских и производственных учреждениях;
 - о состоянии науки и управления образованием зарубежом.

3. Пререквизиты образовательной программы

- 1. Введение в нанотехнологию 3 кр.
- 2. Фундаментальные основы нанотехнологии 2 кр.
- 3. Физические основы микроэлектроники 3 кр.

4. Перечень экзаменационных тем

Дисциплина «Введение в нанотехнологию»

- 1 Развитие нанотехнологий. Приоритетные направления нанотехнологии.
- 2 Разновидности наноматериалов: консолидированные наноматериалы, нанополупроводники, нанополимеры, нанобиоматериалы, фуллерены и тубулярные наноструктуры, катализаторы, нанопористые материалы и супрамолекулярные структуры.
 - 3 Квантовые ямы, проволоки и точки. Наночастицы (нанопорошки).
 - 4 Создание нанообъектов по принципам «сверху вниз» и «снизу вверх».
 - 5 Наноструктурирование под действием давления со сдвигом.
 - 6 Наноструктурирование путем кристаллизации аморфных структур.
- 7 Компактирование (консолидация) нанокластеров. Порошковые технологии для создания наноматериалов.
- 8 Создание наноматериалов: конденсационный метод (метод Глейтера), высокоэнергетическое измельчение.
- 9 Создание наноматериалов: механохимический синтез, плазмохимический синтез.
 - 10 Создание наноматериалов: синтез в условиях ультразвукового воздействия.
- 11 Создание наноматериалов: электрический взрыв проволочек, Методы консолидации, электроразрядное спекание.
- 12 Создание наноматериалов: интенсивная пластическая деформация (кручение под высоким давлением, равноканальное угловое прессование).

- 13 Создание наноматериалов: контролируемая кристаллизация из аморфного состояния.
- 14 Технология наноструктурированных пленок и покрытий: термическое испарение, ионное осаждение, осаждение из газовой фазы, импульсное электроосаждение, газотермическое напыление, термическое разложение.
- 15 Основы нанотехнологии полупроводниковых материалов. Молекулярно-лучевая эпитаксия. Технология получения полупроводниковых квантовых точек.
- 16 Механизмы роста нанопленок по Фольмеру-Веберу, Франку-Ван дер Мерве, Крастанову-Странскому.
 - 17 Методы CVD и PCVD.
- 18 Основы технологии полимерных, пористых, трубчатых и биологических наноматериалов. Гибридные и супрамолекулярные материалы.
- 19 Основные методы создания наноструктур: электронолитография и наноимпринтинг, локальня эпитаксия и эпитаксия поверхностно напряженных структур, самоформирование и синтез в матрицах (темплатный синтез), зондовые методы литографии.
- 20 Метод локального зондового окисления. Физико-химические основы метода локального зондового окисления.

Дисциплина «Фундаментальные основы нанотехнологии»

- 1. Понятие о волновой функции и об её физическом смысле. Понятие об операторах в квантовой механике
 - 2. Понятие о дельта-функции Дирака и ее свойствах
 - 3. Стационарное движение в квантовой механике
 - 4. Движение в прямоугольной потенциальной яме
 - 5. Соотношение неопределенностей для физических величин
 - 6. Уравнение непрерывности в квантовой механике.
 - 7. Уравнения Шредингера для свободного движения. Одномерный случай.
 - 8. Прямоугольная одномерная потенциальная яма бесконечной глубины
- 9. Механизмы роста нанопленок по Фольмеру-Веберу, Франку-Ван дер Мерве, Крастанову-Странскому.
 - 10. Методы CVD и PCVD.
- 11. Основы технологии полимерных, пористых, трубчатых и биологических наноматериалов. Гибридные и супрамолекулярные материалы.
- 12. Основные методы создания наноструктур: электронолитография и наноимпринтинг, локальная эпитаксия и эпитаксия поверхностно напряженных структур, самоформирование и синтез в матрицах (темплатный синтез), зондовые методы литографии.
- 13. Метод локального зондового окисления. Физико-химические основы метода локального зондового окисления.
- 14. Процессы на электродах газоразрядных установок Работа выхода электронов из твердого тела (электрода). Эмиссия электронов с поверхности твердых тел (автоэлектронная, термоавтоэлектронная). Взрывная эмиссия. Вторичная эмиссия. Взаимодействие частиц с поверхностью твердых тел. Катодное распыление частиц с поверхности твердого тела.
- 15. Дрейф заряженных частиц. Электрическое поле. Гравитационное поле. Неоднородное магнитное поле.

Дисциплина «Основы нанотехнологии в материаловедении»

- 1 Нанокомпозитные материалы. Многослойные наноструктуры.
- 2 Морфология наноматериалов. Объемная доля и состояние пределов.
- 3 Классификация нанокристаллических материалов.

- 4 Наночастицы и методы их получения.
- 5 Наносистемы на основе твердоточных кластеров.
- 6 Коллоидные наносистемы.
- 7 Виды углеродных наноструктур
- 8 Свойства углеродных наноструктур
- 9 Методы получения углеродных наноструктур.
- 10 Порошковая металлургия.
- 11 Получение нанокристаллических материалов.
- 12 Физические свойства нанокристаллических материалов.
- 13 Механические свойства нанокристаллических материалов.
- 14 Наноструктурированные магнитные материалы.
- 15 Применение наноматериалов в качестве функционального материала.

5. Список рекомендуемой литературы

«Введение в нанотехнологию»

Основная литература:

- 1. Кобояси Н. Введение в нанотехнологию. М.: БИНОМ. 2005, -134 с.
- 2. Головин Ю.И. Введение в нанотехнологию. М.: Машиностроение. 2007, -496 с.
- 3. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006, -592 с. (Синергетика: от прошлого к будущему).
- 4. Пул-мл. Ч., Оуэнс Ф. Нанотехнологии, (Мир материалов и технологий). М.: Техносфера, 2006, -336 с.
- 5. Андриевский Р.А., Рагуля А.В. Наноструктурные материалы. М.: «Академия», 2005, -192 с.
- 6. Миронов В. Основы сканирующей зондовой микроскопии. М.: «Техносфера», 2005, 144 с.
- 7. Сб. под ред. Мальцева П.П. Наноматериалы. Нанотехнологии. Наносистемная техника. Мир материалов и технологий. М.: Техносфера, 2006, -152 с.

Дополнительная литература:

- 1. Неволин В.К. Зондовые нанотехнологии в электронике, (Мир электроники). М.: Техносфера, 2006, -160 с.
- 2. Сборник под ред. Мальцева П.П. Наноматериалы. Нанотехнологии. Наносистемная техника, (Мир материалов и технологий. Мировые достижения за 2005 год). М.: Техносфера, 2006, -152 с.
- 3. Под ред. Чаплыгина Ю.А. Нанотехнологии в электронике. М.: Техносфера, 2005, -448c.
- 4. Андриевский Р.А. Наноматериалы: концепция и современные проблемы // Российский химический журнал. 2002. Т. 46. № 5. С. 50-56.
- 5. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований / Под ред. М. Роко, Р.С. Вильямса, П. Аливисатоса; Пер. С англ. под ред. Р.А. Андриевского. -М.: Мир, 2002. 292 с.
- 6. Фейнман Р. Внизу полным полно места: приглашение в новый мир физики // Химия и жизнь. 2002. № 12. С. 20-26.
- 7. Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века / Пер. с англ. под ред. Л.А.Чернозатонского. М.: Техносфера, 2003. 336 с.

«Фундаментальные основы нанотехнологии» Основная:

- 1. Стояновский А.В. Введение в математические принципы квантовой теории Москва 2007 г., 230 с.
 - 2. Соколов А., Иваненко Д. Квантовая теория. М. 1952, 780 стр.
 - 3. Валантэн Л. и др. Субатомная физика: ядра и частицы, том 1 и 2,

- 4. «Мир», М., 1986, 272 стр. в 1 томе и 330 стр. во втором.
- 5. Буркова Н.А., Жаксыбекова К.А., Жусупов М.А. Введение в теорию атомного ядра. Алматы, КазНУ, 2008, 252 стр.

Дополнительная:

- 1. Фрауэнфельдер Г., Хенли Э. Субатомная физика. «Мир», М. 1979, 736 с.
- 2. Юшков А.В., Канашевич В.И., Жусупов М.А. Ядерная физика. Понятийный аппарат. Алматы, КазНУ, 2002 г., 151 стр.
 - 3. Жусупов М.А., Юшков А.В. Физика атомных ядер, том 3, Алматы 2007,735 с.
- 4. Иродов И.Е. Сборник задач по атомной и ядерной физике. М., 1971, задачи №№ 4.1 4.32; 4.34 4.40, 4.48, 4.49, 4.51- 4.61; 4.65, 4.68, 4.71, 4.72, 4.76, 4.77.
- 5. Гречко Л.Г. и др. Сборник задач по теоретической физике. М., 1972, задачи №№ 9 37; 47, 48, 50, 54, 56; 78, 79; 102 108; 109, 110, 113, 119 122.
- 6. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. М., 1981, задачи №№ 1.3 1.10, 1.14; 1.19 1.21, 2.1 2.9, 2.19, 2.51, 2.52; 2.45; 3.10 3.14, 3.20, 3.22 3.24, 3.26, 3.34, 3.37, 3.39, 3.47, 3.52 3.56; 4.4, 4.14; 2.26, 2.27, 2.31; 10.1, 10.5, 10.9, 11.6, 11.8, 11.37.

Учебно-методические пособия и разработки

- 1. Жусупов М.А., Ибраева Е.Т. Уравнение Шредингера и его простейшие применения. Алма-Ата, КазГУ, 1985
- 2. Жусупов М.А., Ибраева Е.Т., Васильев А.Б. Введение в математический аппарат квантовой механики. Алма-Ата, КазГУ, 1986
- 3. Жусупов М.А. Системы тождественных частиц в квантовой механике. Алма-Ата, КазГУ, 1986

« Основы нанотехнологии в материаловедении» Основная

- 1. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006, -592 с. (Синергетика: от прошлого к будущему).
- 2. Пул-мл. Ч., Оуэнс Ф. Нанотехнологии, (Мир материалов и технологий). М.: Техносфера, 2006, -336 с.
- 3. Андриевский Р.А., Рагуля А.В. Наноструктурные материалы. М.: «Академия», 2005. -192 с.
- 4. Миронов В. Основы сканирующей зондовой микроскопии. М.: «Техносфера», 2005, 144 с.
- 5. Сб. под ред. Мальцева П.П. Наноматериалы. Нанотехнологии. Наносистемная техника. Мир материалов и технологий. М.: Техносфера, 2006, -152 с.

Дополнительная литература:

- 1. Неволин В.К. Зондовые нанотехнологии в электронике, (Мир электроники). М.: Техносфера, 2006, -160 с.
- 2. Сборник под ред. Мальцева П.П. Наноматериалы. Нанотехнологии. Наносистемная техника, (Мир материалов и технологий. Мировые достижения за 2005 год). М.: Техносфера, 2006, -152 с.
- 3. Андриевский Р.А. Наноматериалы: концепция и современные проблемы // Российский химический журнал. 2002. Т. 46. № 5. С. 50-56.
- 4. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований / Под ред. М. Роко, Р.С. Вильямса, П. Аливисатоса; Пер. С англ. под ред. Р.А. Андриевского. -М.: Мир, 2002. 292 с.
- 5. Фейнман Р. Внизу полным полно места: приглашение в новый мир физики // Химия и жизнь. 2002. № 12. С. 20-26.
- 6. Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века / Пер. с англ. под ред. Л.А.Чернозатонского. М.: Техносфера, 2003. 336 с.

6. Шкала оценки результатов экзамена по специальности «8D07112 – наноматериалы и нанотехнологии»

Оценка по буквенной системе	Цифровой эквивалент баллов	%-ное содержание	Оценка по традиционной системе	Компетентностная шкала
A	4,0	95-100	Отлично	Данная оценка ставится в том случае, если докторант 1) Владеет методами исследования, анализа, диагностики и моделирования свойств веществ (материалов), физических и химических процессов в них и в технологиях получения. 2) Владеет навыками обработки и модификации материалов, использования их в исследованиях и расчетах; 3 Умеет применять полученные знания при теоретическом анализе, компьютерном моделировании и экспериментальном исследовании физических процессов, лежащих в основе нанотехнологии изготовления современных приборов электроники; основные методы получения наночастиц и наноструктур. 4) владеет основами менеджмента владеет навыками анализа первичных экспериментальных данных исследования структуры и физико-химических свойств наночастиц и нанообъектов с использованием основных методов.
A-	3,67	90-94		Данная оценка ставится в том случае, если докторант 1 Владеет навыками использования принципов и методик комплексных исследований, испытаний и диагностики материалов, изделий и процессов их производства, обработки и модификации, включая стандартные и сертификационные испытания;

				2) риолаат новина и
				2) владеет навыками
				использования технических
				средств измерения и контроля
				основных параметров
				технологических процессов,
				свойств материалов и изделий
				из них.
				3) Знает основные технологии
				получения полупроводниковых
				наноструктурированных
				материалов. Виды и
				классификации
				наноструктурированных
				материалов.
				4) Владеет информацией об
				областях применения и
				перспективах развития
				нанотехнологий;
				Данная оценка ставится в том
				случае, если докторант
				1) Имеет знания и понимание
				формирования
				наноструктурированных
		материалов,	материалов, материалов на	
			_	
		элементов, материалов		
				электроники для
				нанотехнологий.
				2 Владеет теорией
				зародышеобразования.
				Владеет классификацией
				наноструктурированных
1				материалов и методами их получения.
				3) Умеет классифицировать
$\mathrm{B}+$	3,33	85-89	Хорошо	, ,
				наноматериалы по их
				назначению и свойствам;
ı				умеет диагностировать и
				тестировать структуру и
				свойства производимых
				наноматериалов; знает
				классифицикафию
				наноматериалов по степени их
				воздействия на окружающую
				среду, включая вопросы
				безопасности при их
				производстве.
				4) Владеет физическими
				методами модифицирования и
				получения наноматериалов;
				знает принципы физических
				методов получения
<u> </u>	J	<u> </u>	1	inon's territor

			напоканстаннинеских
			нанокристаллических
			материалов, пленок, покрытий,
			нанокомпозитов и
			нанопористых материалов, их
			преимущества и ограничения.
			Данная оценка ставится в том
			случае, если докторант
			1) Владеет методом
			химического осаждения; знает
			основы теории роста
			нанокристаллов и роль
			процессов оствальдова
			созревания и агрегации
			нанокристаллов в процессах
			синтеза наночастиц в жидких
			средах.
			2) Обладает теоретическими
			знаниями о физических
В	3,0	80-84	причинах так называемых
			размерных эффектов, которые
			проявляются в самых
			различных свойствах
			наноструктур.
			3 Знает принципиальные
			различия в свойствах
			различных материалов и
			веществ при
			переходе от обычных к
			нанометровым размерам.
			4) Имеет представление
			современных метода
			_
			наноструктур;
			Данная оценка ставится в том
			случае, если докторант
			1) Обладает знаниями о
			практическом использовании
			нанотохнологий.
			2) Владеет технологией
			научного исследования;
			Знает основные этапы научного
			исследования и их содержание;
B-	2,67	75-79	3) Умеет осуществлять научные
			исследования в
			профессионально –
			педагогической деятельности;
			Знает теоретическую базу
			нанотехнологии;
			1
			нанотехнологии;
			4) Умеет выбирать нужный экспериментальный метод для
	1	1	DIFOTT 04113 FOTTMO TY TYT YY 3 FOTTO

		получения	той	или	иной
		информации	O	сво	йствах
		нанострукту	p.		